Skip to content

Kinematic Bicycle Model

This page describes the kinematic bicycle model. The reference point for the vehicle dynamics is the center of gravity (CoG).

See also the vehicle model interface documentation for additional information.


State Vector

The state vector is defined as:

\[ \mathbf{x} = \begin{bmatrix} x \\ y \\ v \\ \psi \\ \delta \end{bmatrix} \]

where:

Symbol Description
\(x, y\) Global position of the vehicle CoG
\(v\) (Total) Velocity
\(\psi\) Heading angle
\(\delta\) Steering angle

Control Inputs

The control input vector is given by:

\[ \mathbf{u} = \begin{bmatrix} a \\ \dot{\delta} \end{bmatrix} \]

where:

Symbol Description
\(a\) Longitudinal acceleration
\(\dot{\delta}\) Steering angle velocity

Input bounds are derived from the vehicle parameters a_long_max, steering_angle_velocity_max.


Vehicle Parameters

The model uses the following parameters:

Symbol Description
\(l_f\) Distance from CoG to front axle
\(l_r\) Distance from CoG to rear axle
\(l\_{\mathrm{wb}}\) Wheelbase (\(l_f + l_r\))

Kinematic Relations

The continuous-time dynamics of the kinematic bicycle are:

Slip Angle

\[ \beta = \arctan\left(\tan(\delta) \frac{l_r}{l\_\mathrm{wb}}\right) \]

Position Dynamics

\[ \dot{x} = v \cos(\psi + \beta) \]
\[ \dot{y} = v \sin(\psi + \beta) \]

Longitudinal and Heading Dynamics

\[ \dot{v} = u_1 \]
\[ \dot{\psi} = \frac{v \sin(\beta)}{l_r} \]

Steering Dynamics

\[ \dot{\delta} = u_2 \]

Normalized Accelerations

The model provides the normalized longitudinal acceleration

\[ a\_{\mathrm{long,norm}} = \frac{u_1}{a\_{\mathrm{long,max}}} \]

and the normalized lateral acceleration: $$ a_{\mathrm{lat}} = v \cdot \dot{\psi}$$ $$ a_{\mathrm{lat,norm}} = \frac{a_{\mathrm{lat}}}{a_{\mathrm{lat,max}}} $$